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The presence of dissipation in an isothermal atmosphere may cause upward- 
propagating small amplitude waves to be reflected downward. For an atmosphere 
with small dynamic viscosity p this was demonstrated in Yanowitch (1967 b) ;  
this will be referred to as case 11. Here two problems will be investigated: (i) a 
thermally conducting atmosphere with small conductivity k (case 111) and (ii) a 
viscous and thermally conducting atmosphere with small E and p, and a small 
ratio p /k ,  i.e. small Prandtl number (case IV). It will be shown that the validity 
of the model in case I11 is questionable. The solution for case IV is determined 
from the conditions that the average rate of energy dissipation and of entropy 
increase in a column of fluid be finite, but a radiation condition is required in case 
111. The solution for case I11 does not approximate the one for case IV uniformly, 
and the reflexion coe5cient for case IV does not tend to the one for case I11 as 
the Prandtl number Pr -+ 0, but varies periodically with log Pr. Numerical 
results show that when the Prandtl number is not small the reflexion coefficient 
can be approximated by the asymptotic value obtained from case 11. 

1. Introduction 
It is well known that upward-travelling atmospheric waves of small amplitude 

can be reflected downward if the Brunt-Vaisala frequency varies with the 
altitude z .  But, even when the Brunt-Vaisala frequency is constant, additional 
reflexion is possible owing to dissipative effects which grow exponentially with the 
altitude owing to the decrease in the density. Although this type of reflexion 
is usually of lesser importance, it may be significant when the vertical wave- 
length is large. 

Reflexion produced in a density-stratified fluid by an exponentially increasing 
kinematic viscosity v = p / p  was examined by Yanowitch (1967a, b) .  As is to be 
expected, the effect of viscosity is negligible in the region where v is small (except 
possibly in a boundary layer), and the waves approximate those in an inviscid 
fluid. I n  the region where 1’ is large, on the other hand, the effect of viscosity is 
dominant and the motion dies out as z -+ 00. The reflexion is produced in the 
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layer which connects these two regions. As p + 0 the magnitude of the reflexion 
coefficient (the ratio of the amplitude of the incident wave to that of the reflected 
wave) approaches a limiting value: /K12/  + exp ( - 2n2H/h), where his the vertical 
wavelength and H is the density scale height. The reflexion is therefore greatest 
as h --f 00, and is negligible when the wavelength is small. Similar results were 
obtained by Lindzen (1968) for the problem of atmospheric tidal oscillations in 
which the dissipation is provided by Newtonian cooling. 

These results cannot be obtained directly from the small amplitude inviscid 
problem (p = 0) since it contains no reflecting mechanism, and the radiation 
condition is appropriate in this case (see Lamb 1932, pp. 541-543). Moreover, the 
linear inviscid problem is not a reasonable one anyway, since the solutions 
obtained grow exponentially as z --f 00, thus violating the small amplitude 
assumption. The approximation obtained by setting p = 0 cannot be valid uni- 
formly for all z. 

In  this paper we shall examine separately and together the reflecting effects 
of viscosity and thermal conduction in an isothermal atmosphere. Nonlinear 
effects will be ignored although they may be important owing to the exponential 
growth with x of the oscillation amplitude. A numerical study of the nonlinear 
equations is given in Yanowitch (1969). A nonlinear treatment of waves in a 
weakly stratified atmosphere, i.e. one in which the scale height is large compared 
with the vertical wavelength, was given by Drazin (1969) and by Grimshaw 
( 1  972). 

For the sake of brevity, we shall refer to Lamb’s problem, where both the 
viscosity p and the thermal conductivity k are zero, as case I and to the problem 
for a viscous fluid (p > 0, k = 0) previously referred to as case 11. First we shall 
study the vertical wave motions in an inviscid isothermal atmosphere with small 
thermal conductivity k; this will be labelled case 111. This problem is a natural 
one to investigate as a simple model for an atmosphere with small Prandtl 
number Pr (which is proportional to p / k ) ,  such as the solar corona (see, for ex- 
ample, Parker 1963, pp. 37-38). Despite the presence of dissipation in both 
cases the solutions for case I11 differ markedly from those of case 11. As is to be 
expected, the wave motion in the region where the thermal diffusivity is small 
approximates the wave motion of case I .  I n  contrast to case 11, the region of 
large thermal diffusivity is also capable of supporting wave motions, albeit 
of a different wavelength, and this necessitates the imposition of a radiation 
condition. The temperature oscillations die out as x + 00, but the oscillations in 
the vertical velocity increase exponentially just as they do in case I. Thus, wave 
energy in the region of small thermal diffusivity is partly reflected and partly 
transmitted with a changed wavelength into the region of large thermal dif- 
fusivity. Since some of the energy is carried off to infinity, it is not surprising that 
the limiting value of the reflexion coefficient 1K,1 is now smaller than for case 11. 

The exponential increase of the velocity in case I11 raises questions concerning 
the validity of the results, and to resolve these we shall examine case IV: the 
problem of a viscous and thermally conducting isothermal atmosphere (p > 0, 
k > 0) for small Prandtl number. This is a singular perturbation problem, since 
the solutions for case I11 do not approximate those of case IV uniformly, and 
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the solution is found by matching two asymptotic approximations which are 
valid in overlapping regions. It is shown that in this problem there are two 
reflecting layers, the lower one due to the effect of thermal conduction and the 
upper one due to viscosity. The upper reflecting layer tends to z = 00 as Pr + 0 
(k = constant, ,u --f 0)) and below this layer the solution behaves like some solu- 
tion of the problem in case 111, while above it the energy dies out owing to 
viscous dissipation as it does in case 11. Since the solution oscillates between the 
two layers, a shift in the upper layer of half a wavelength ought to leave the 
reflexion coefficient unchanged, and it is found indeed t'hat IK,l varies periodic- 
ally with log Pr. Therefore, the results of case 111 are not recovered in the limit' 
in which k --f 0 and Pr is small. However, the value of IK,I obtained in case I11 
is found to be approximately equal to the average value of lK,l for case IV. 

The results of numerical computations are described in $5 .  It turns out that 
the variation of lKRl with Pr can be approximated by the asymptotic results 
obtained for case I1 and for case IV. The formula for case IV appears to be quite 
accurate for Pr less than about 0.2, while above that lKRl is nearly constant and 
equal to exp ( -  27rzH/h). 

2. Statement of the problem 
Suppose that a perfect gas which is viscous and thermally conducting occupies 

the upper half-space z > 0. We shall study small vertical oscillations about 
equilibrium, i.e. oscillations which depend only on the vertical co-ordinate z and 
on the time t .  

Let po,  po and To represent the equilibrium pressure, density and temperature. 
They are connected by the gas law p ,  = p o R T o  and the hydrostatic relation 
pi+ gp, = 0 (R = gas constant and g = acceleration due to gravity). We shall 
consider an isothermal atmosphere, i.e. To = constant. Then, as is well known, 

PdZ) = POP) e=P ( -  Z I H ) ?  Po@) = PO(0) exp ( -  z / m  
where H = RTo/g is the density scale height. 

Let p ,  p, T and w denote the perturbations in the pressure, density, tempera- 
ture and vertical velocity. The linearized equations of motion (conservation of 
momentum and mass, the heat flow equation and the gas law) can be written in 
the form 

Po Wt  +Ips + SP = %J%s, (2 . la )  

( 2 . l b )  

( 2 . l c )  

( 2 . l d )  

Here ,u is the dynamic viscosity coefficient, which is assumed to be constant, k is 
the thermal conductivity and c, is the specific heat a t  constant volume. It is 
convenient to rewrite the problem in dimensionless form. Let 

Z* = z /H ,  t* = a,t, W* = WIG, T* = T / ( 2 y T o ) ,  
18-2 
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where c = (yqH)* is the speed of sound, with y the ratio of specific heats, and 
a1 = c/2H. In  addition we int'roduce two dimensionless parameters: 

c = 3k/c,p,(O) CH 

and the Prandtl number Pr = cp,u/k, 

where cp is the specific heat a t  constant pressure. Eliminating the pressure and 
the density in (2.1) results in a pair of equations for T and w:  

~ e ~ T , , - T , - [ ( y - l ) / y ] w ,  = 0, ( 2 . 4 ~ )  

3ywtt- 12(w2,--w,)-4Pr~e2w,,,+ 12y(T,-T), = 0. (2.4b) 

The asterisks have been dropped since only dimensionless variables will be con- 
sidered from now on. Letting w ( z ,  t )  = w ( z )  e-ivt and T(z, t )  = P(z)  e-irt, sub- 
stituting in (2.4) and dropping the tilde yields two equations for the complex 
amplitudes W ( z )  and T(z) :  

( e e z D 2 + i g ) T - [ ( y - l ) / y ] D W  = 0, (2.5a) 

(D2-D+fya2)  W-&iaPrEe2D2W+iry(D-  1)T = 0, (2.5 b) 

where D denotes the derivative with respect to z. If, furthermore, W is eliminated 
from (2 .5 ) ,  one obtains a single fourth-order equation for T: 

( 3 i r y ( D 2 - D + ~ a 2 )  + 3seZD2(D2+D+$ya2) +cr2Preez(D2+D) 

- (iaPr/y) (eeSj2D2(D + 1 )  (D + 3)} T = 0. (2.6) 

We shall make use of both (2.5) and (3.6). 
Boundary conditions. The oscillations can be assumed to be excited by some 

mechanism at z = 0 or below. The exact nature of the excitation is not important 
since our object is to study the reflexion which, for small e, takes place a t  large 
heights (in the region near z = -1og~).  For numerical computations (see $ 5 )  
me shall prescribe 

Otherwise it is more convenient to adopt the condition that in aJixed interval 
0 6 z < zl, the solution must approach some soktion of the inviscid and non- 
conducting problem (,u = k = 0) as E --f 0. We shall refer to this as the lower 
boundary condition. Except for a normalizing constant, the solution obtained with 
the lower boundary condition will differ from the one obtained with (2.7) only in 
a narrow thermal boundary layer near z = 0, which has no effect on the limiting 
value of the reflexion coefficient. 

Two further conditions which refer to the behaviour of solutions for large z 
are required. The first, which we shall call the dissipation condition, requires 
that a finite amount of energy be dissipated in an infinite column of fluid of unit 
cross-section per period of oscillation (see Yanowitch 1967a). Since the dissipa- 
tion function depends on the squares of the velocity gradients, the dissipation 
condition is equivalent to 

TV(0) = 1, T(0)  = 0. (2.7) 
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The dissipation condition is, of course, inapplicable if p = 0. The second con- 
dition is determined by the equation for the rate of change of entropy (see 
Landau & Lifshitz 1959, p. 186), from which it follows that 

/om 1~,12ciz < co if k > 0. (2.9) 

The entropy condition is inapplicable if k = 0. 
There are four possible cases. 
Case I. p = k = 0. This is the classical problem considered in Lamb (1932, 

pp. 541-543). The equation for W is 

(P-D+*+) W = 0, 

a differential equation of second order with constant coefficients. For > 1 (i.e. 
a > al in dimensional units) the solutions behave like exp ( S a i p ) z ,  with 
2 p  = (a2- 1)6. Lamb’s solution, satisfying W(0)  = 1, is W = exp(&+ip)z, 
an upward-propagating wave satisfying the radiation condition. As we have 
noted, this solution cannot be considered satisfactory since the growth of W as 
z -+ co violates the assumptions underlying the linearization. 

Case 11. k = 0, EL > 0. This problem was considered in Yanowitch (1967b). 
The equation for W ,  which can be obtained from (2.5) by setting c = 0 and 
eliminating T, is 

4(1 - i se2 )D2W-40m+a2W = 0, 

where S = 2ap/3cHpO(O). The equation for T is superfluous since k = 0. The 
problem has a unique solution satisfying the dissipation condition and the con- 
dition W ( 0 )  = 1. As S+ 0, the solution approaches a limit in a co-ordinate system 
which shifts so as to keep Se2 constant. This limit coincides with a solution of the 
inviscid problem in a region where Se2 < 1, but not with Lamb’s solution, because 
of the appearance of a reflected wave. The magnitude of the reflexion coefficient 
is IKIrl = e-”P. Thus, the radiation condition becomes more accurate as p -+ co, 
i.e. as the vertical wavelength decreases. Furthermore, the solution is uniformly 
bounded for all z. 

Case 111. p = 0, k > 0, i.e. Pr = 0. This is the case of an inviscid but thermally 
conducting fluid, which might be expected to provide a natural approximation 
for the problem with small Prandtl number. A fourth-order differential equation 
is obtained by setting Pr = 0 in (2.6). Despite the presence of thermal conduction, 
the lower boundary condition and (2.9) do not suffice to determine a solution 
uniquely, and a radiation conduction must be imposed. Thus, the model suffers 
from t’he same drawback as the model in case I. Since part of the energy is re- 
flected and part transmitted to infinity, the limiting value (as e + 0) of the 
magnitude IK,J of the reflexion coefficient is smaller than for case I1 (see §3) .  
The questionable validity of the results leads to the examination of the problem 
with small Prandtl number. 

Case IV. p > 0, k > 0. The problem is to find a solution to the system of dif- 
ferential equations (2.5) satisfying (2.8), (2.9) and the lower boundary condition. 
Under these conditions the solution is unique and uniformly bounded for all 
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z 2 0. An approximation for small Pr is obtained in $4 by a singular perturba- 
tion procedure, which shows that the solution for case I11 is not uniformly valid. 
The limiting value of ]ITR\ (as 6 4 0) is now found to depend on Pr. For Pr < 0.2 
the asymptotic results are found to agree well with those obtained by numerical 
integration (see $ 5). 

3. Oscillations of an inviscid thermally conducting atmosphere 
First we shall consider the case of an inviscid atmosphere with small thermal 

conductivity, and shall determine the asymptotic behaviour of the solution and 
the reflexion coefficient as E + 0. The equation for T can be obtained by setting 
the Prandtl number Pr = 0 in (2.6): 

(3.1) 

TO solve this equation, it is convenient to introduce a new independent variable 
< defined by 

(3.2) 
which transforms (3.1) into 

(3.3) 

here 8 = <d/d<. The point 5 = 0 corresponds to z = co, the point to = 6-l exp ($in) 
to z = 0 and the segment joining these points in the complex-< plane to z 2 0. 
As E -+ 0, the point &,tends to co. Consequently, we shall examine the asymptotic 
behaviour of solutions of (3.3) for large 161. 

The point < = co is an irregular singular point of (3.3) of rank one. There exist 
four independent solutions, whose asymptotic behaviour as fl  4 00 along the ray 
with arg < = $ni is given by 

(icry(D2 - D + *a2) + EezD2(D2 + D + $yv2)}  T = 0. 

< = e-"/ie = E - ,  exp ( - x + $in), 

{yv<(02 + 8 + p) - 02(02 - e + i y g 2 ) )  T = 0; 

(3.4) 1 
T?(<) - @[1+hl,<-l+ ...I, 
Tg(<) - @~[I+h~~<--l+. . .] ,  
T; ( 6 )  - <-$[ 1 + h,, C-4 + . . .] exp ( - m@), 

T;(<) - <-&[I + h,,<-) + . . .] exp (m@), 
where 

(3.5) 

The first two of these represent waves travelling respectively downward and 
upward which approximate waves in an inviscid and non-conducting isothermal 
atmosphere: T," N exp[(&-ip)z] and TF - exp[(++i/3)z]. The third one cor- 
responds to the boundary-layer term, which decays with increasing x like 
exp [ - ( yg /2~ )4z ] .  This term would be present if the boundary condition (2.7) 
were prescribed. It is more convenient to use the lower boundary condition, 
from which it follows that the solution T(<) must behave asymptotically like a 
linear combination of TT and T,", i.e. T(<) - dl%i+d2@. The ratio d,ld2 of the 
coefficients determines the reflexion coefficient. 

The point < = 0 is a regular singular point of (3.3) with characteristic exponents 

a, = -*+ip, a2 = -*- ip = z,, p = a(&?- I)&, m = 2(yv)h. 
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where /3* = $(yg2- 1)Q. Consequently, there are four independent solutions 

Here and subsequently all the sums are infinite sums and a prime indicates 
differentiation. A11 the series converge for 161 < co since 6 = 0 and f ;  = co are the 
only singular points of (3.3). The first terms of these expansions describe the 
behaviour of (3.1) for fixed 6 > 0 and large z :  

} (3.8) 
T , ( z )  N exp [ - (8 + ip*) 23, T,(z)  N exp [( - $ + i,8*)23, 
T3(z) N constant+O(e-z), T4(z) N z+O(l) .  

It is clear that only T4 fails to satisfy the entropy condition (2.9). Thus, the 
conditions imposed so far are insufficient for determining a unique solution. We 
shall, therefore, add on the radiation condition, which rules out T, since the energy 
associated with it travels downward. Thus, the required solution must be a 
lineaa combination of T2 and T3: 

T(5) = C,T,(E) +c3T3(E). 13.9) 

The coefficients c2 and c3 are to be determined so that the asymptotic expansion 
of T(6)  does not contain the exponentially increasing term Tg(f;) .  

The behaviour of the velocity oscillations as z +- co can be obtained from(2.6~) 
and (3. 8), which yield 

W ( z )  N constant x exp (+ + ip*) z .  (3.10) 

The velocity oscillations are not inhibited by thermal conduction but the wave- 
length is affected, and it is evident that energy is carried off to infinity. 

We now turn to the problem of finding the asymptotic behaviour (as f ;  -+ 03) 

of T, and T3. The coefficients a,(pj) in the expansions (3.7) are determined from 
the recursion formula 

f&n+ 1 +pj)a,+,+f,(n+Pj)an = 0, a, = 1, j = 1,233, (3.11) 

' 

where 

Making use of the functional relation r ( y +  1) = @(y) for the gamma function, 
we obtain the following expression for an(pj), j = 1,2,3:? 

fo (Y)  = Y2(Y2 - Y + ikYO2), f,(Y) = - Y d Y 2  + Y + *a". 

where 

(3.12) 

(3.13) 
- ,- i+i,&*, p 2 -  - -+ - ip*=  P: p - _ -  and 

The asymptotic behaviour of T2 and T3 can now be obtained directly from the 
results of Ford (1960, chap. VII). Omitting the details of the computations, which 
can be foundin Lyons (1972), we obtain for j  = 1,3 and 3 

Tj( [ )  N bjlT," + bj2T," + bj,T,", 161 -> m, argc = +n, (3.14) 

t The expression for a,(pl) will be needed in 3 4. 
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FIGURE I.  Magnitude of the reflexion coefficient for case I11 as a function of 
frequency CT, or of the wavenumber P. 

(3.15) I where bj1 = -b(Pj)C(al)pj), bj2 = -b(pj) C(a,,pj), 
bj3 = ib(pj) (yg)-i  exp (377ipj)/2 yir, 

C(a,p) = ~ ( y c r ) ~ e x p  [-in(a-p)]/G(a)sinn(a-p),  

G(CC) = rya+ I)  r(a-p1)r(a-P2)lr(a-cc). 
Thus, 

and, since the coefficient of T? must vanish, 

T(<) ( c 2 b 2 1 f c 3 b 3 1 )  T," + ( C 2 b 2 2 + C 3 b 3 2 )  T," + ( C 2 b 2 3 + C 3 b 3 3 )  T?, (3.16) 

'2/'3 = - b33/b23,  

This determines T except for a normalizing constant. Returning to the z co- 
ordinate, we have in any fixed interval 0 6 z 6 z1 

T(z)  = constant {exp [(+ + ip) z ]  + K ,  exp [(g - i/?) z]} [1+ O ( s ) ] ,  (3.17) 

where the reflexion coefficient ICE is given by 

h', = (iE)-"'(c2b21 + C 3 b 3 1 ) / ( C 2 b 2 2  + C 3 b 3 2 )  

C(al, p2) e2nip3 - C ( a l , p 3 )  e2nip2 

C(a2, p2) e2nip3 - C(a2,  p 3 )  e2nipa 
= ( i p w  

sinh r(P* - p)  G ( a 2 )  
sinhr(P* +p)  G(al) 

= e n b  exp [%/?log ( yc r /~ ) ] .  (3.18) 

The following picture emerges for small E and (T > 1. (a) I n  the region where 
E e" < I the solution consists of an incident and a reflected wave, the wavelength 
being h = %//3 = 477(g2- I)-&. (b) In  the region where ce" 9 1 the solution 
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behaves like an outgoing wave with wavelength A* = 2n//3* = 4 7 r ( y c ~ ~ -  1)-* < A. 
( c )  The reflexion takes place in the region where sez - 1. ( d )  As c + 0 the solution 
T(z)  approaches a limit ina co-ordinate system which shifts so that ee" = constant. 

It should be noted that 
sinh 7r(/3* - /3) 
sinh n(/3* + /3) 

lKnl = e@ 

(3.19) 

Thus lKxl is smaller than it is for case 11. As in case 11, lKRl + 1 as /3 -+ 0 (total 
reflexion) and lKRl + 0 as p + 00. Thus, the radiation condition becomes more 
accurate as the wavelength decreases. A plot of lKRl as a function of c~ is shown 
in figure 1. 

The exponential growth of the velocity casts doubt on the validity of the 
results. Hence, we turn to the problem in which both viscosity and thermal con- 
duction are taken into account. 

4. Oscillations of a viscous and thermally conducting atmosphere 
We shall now consider the boundary-value problem for the differential equa- 

tion (2 .6 )  subject to the lower boundary condition and conditions (2.8) and (2 .9 ) .  
Introducing the independent variable < by means of (3 .2)  transforms (2.6) into 

{aPr02(O- 1) ( O - ~ ) - ~ T ~ P Y < ( O ~ - O ) -  3<82(82-0+&~2) 

+ ~ ~ ~ T < ~ ( O ~ + O + B ~ T ~ ) } T  = 0. (4 .1 )  

The point < = 0 is a regular singular point of (4 .1 )  with characteristic exponents 
p1 = 2,  p , = 1 and p3 = p4 = 0, and there are four solutions, which, in a neigh- 
bourhood of < = 0, can be represented in the form 

} (4 .2 )  
Tl(<) = a m  tn+2, T,(<) = 2 4 1 )  tn+l + Tl(<) log <, 
T3(<) = xa;(o)<n, T,(<) = Ca;(o)<n+3T3(<)log~, 

where the coefficients a,(pi) are determined from a three-term recursion formula 
and a&) = p2(p - 1). Returning to the x co-ordinate, we obtain for large z 

Tl(z) = O(e-2Z),  T2(z) = O(e+),  T3(x) = O(l ) ,  T4(z) = O ( z ) .  (4 .3 )  

The velocity amplitudes corresponding to these can be obtained from ( 2 . 5 ~ ) )  
which results in 

W;(z)  = 0 ( e c z ) ,  Wi(z)  = O ( l ) ,  W;(z) = O(e-z), W;(z) = O(z ) .  (4 .4 )  

Since W, and W, do not satisfy (2.8) and T4 does not satisfy (2.9), the solution must 
have the form 

T ( z )  = c~T, ( z )  + c3T3(x), W ( Z )  = c;W,(Z) +c;W3(z). ( 4 . 5 )  

The point < =m is an irregular singular point of ( 4 . 1 ) )  and to first order the 
asymptotic behaviour of the solutions is governed by the same terms as in the 
differential equation (3.3) for case 111. Thus, there are four solutions with asymp- 
totic expansions of the form (3.4). The lower boundary condition requires the 



282 P. Lyons and M .  Yanowitch 

coefficient of TF in the asymptotic expansion of the solution T(5)  to vanish, and 
this suffices, in general, to determine the ratio of the coefficients c1 and c3 in 
(4.5). Thus, the boundary-value problem has a unique solution except for a nor- 
malizing constant. It should be noted that, in contrast to case 111, both T and 
W approach constant values as z + 00, so that the linearizing assumption is not 
violated as it is in cases I and 111. Since the density decays exponentially 
with z, the energy density also decays exponentially. 

It is difficult to obtain the asymptotic behaviour of Tl(<) and T3(c) from the 
expansions (4.2) since the coefficients an satisfy a three-term recursion formula. 
We shall limit ourselves, therefore, to the case of small Prandtl number, which 
leads to a singular perturbation problem. 

Let R(C) denote the ‘inner’ approximation, which is obtained by setting 
Pr = 0 in (4.1). The resulting differential equation, 

{rcgez + 8 + p )  - oye2 - 19 + i Y e z ) )  R = 0, (4.6) 

is precisely the one for case 111. As we have seen, the solutions of (4.6) have the 
same behaviour to first order as those of (4.1) for large 5, but the same is not 
true near [ = 0, as is evident from (3 .7 )  and (4.2). However, R(6) will approximate 
the required solution of (4.1) uniformly as Pr + 0 on A Q < co, a r g t  = +T, 

for any positive A .  
To obtain the ‘outer’ approximation we introduce the stretching < = P r y ,  

which transforms the singular point at < = +CPr into a stationary one at y = 45 
and the differential equation (4.1) into 

( ~ ( 0  - 1)  (8 - 2) - 3y(82 - I9 + & y e 2 ) }  82T + Pr y { 3 y ~ y ( 8 ~  + 8 + $c2) 

- f72(82-  8)) T = 0. (4.7) 

The velocity amplitude W can be obtained from (2.5a), which becomes 

Lett’ing T ( q )  = Pr X(y) and setting Pr = 0 yields 

( ~ ( 8 -  1 ) ( 8 - 2 ) - 3 y ( 8 2 - 8 + ~ ~ ~ 2 ) ) 1 9 2 X  = 0, (4.91 

O W  = [ iy / (y -  l)]y-18W. (4.10) 

The solutions of (4.9) will approximate those of (4.7) if 6 = Pry is small. Since 
y -+ co for any fixed positive “1 as Pr + 0, the asymptotic behaviour of S(y) 
as y --f co must be matched with the behaviour of R(6) as c -+ 0. 

The outer approximation X(y) must satisfy (4.9) and the conditions (2.8) and 
(2.9). The point y = 0 is a regular singular point of (4.9), with characteristic 
exponents p1 = 3, pz = 1 and p3 = p4 = 0. Corresponding to the first two there 
are two solutions of the form 

= C a’n(2) ynfz ,  X2(7) = X aA(1) qn+l + fJi(7) log 7, (4.1 I a )  

where the series converge for Iyl < +T. The solutions corresponding to p3 and 
p4 are simply 

(4.11 b )  
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It is easy to see from (4.10) that only S, and S, satisfy all the conditions, so that 

= c 1 x 1 ( 7 ) + c 3 S 3 ( 7 )  = C 1 X 1 ( 7 ) f C 3 .  (4.12) 

The point 7 = cc is also a regular singular point of (4.9)) and there are four 
solutions of the form 

(4.13) 

The asymptotic behaviour of S,(r) as 7 + 03 can now be deduced from the first 
theorem of Ford (1960, chap. I). Omitting the details of t.he computations, 
which can be found in Lyons (1972), one obtains 

1 ST(7) = T1+pJZhjkr-k, j = 1,2,  

#,m(r) = fl,(7) = 1, &Yr) = SAT) = logy. 

(4.14) 

(4.15) 

4 7 )  = c,d,&Y7)+c,d,~,"(7)+ (CId3+C3),  Irl > +g- (4.16) 

Retaining the most significant terms and returning to the 6 variable yields the 
result 

X([) N cldl(</Pr)*+ip* + c,d,(a$/Pr)t'P* + cld3 + ~ 3 ,  (4.17) 

where the ratio C J C ~  is to be determined from the matching procedure. 
We now turn to the inner approximation R(6). The problem for the differential 

equation (4.6) has already been considered in 5 3. I n  view of (4.17), 

R ( 0  = 8, Tl(6) + G%(a$) + 83T3(8, (4.18) 

where the Ti are given in (3.7). The procedure for finding the asymptotic behaviour 
is the same as for case 111, and the details need not be repeated. The result is 
different, of course, because T, must be included in (4.18) since the radiation 
condition is not applicable any more. The asymptotic behaviour of R([) is given 
by 

R(t )  N (8, bll + 8, bzl + 8, b3i) T," + (6, b,, + d2b2, + 8,b3,) T," 

+ (bib13 +a", b23 + 83b33) Tg, (4.19) 

where the coefficients bij are specified in (3.15). The vanishing of the coefficient 
of TF follows from the lower boundary condition, and this yields a relation 
between the 8,: 

exp ( - 2n/3*)8, + exp (27ip*) 8, -8, = 0. (4.20) 

Retaining only the most significant terms, we obtain 

R(6) N a",<i+iP'+a",a$*-ig. +8, (4.21) 

for small [, and comparison with (4.17) results in 

8, = cldlPr-k-ip*, 6, = ~ , d , P r - $ + ~ p * ,  8, = c,d,+c3. ( 4 . 2 2 a , b , c )  
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The four relations (4.20) and (4.22) suffice to determine all the coefficients to 
within a normalizing constant. For example, if ii, is prescribed, one can compute 
c1 and ii2 from (4.22a, b ) ,  then 6, from (4.20)) and finally c3 from (4.22~).  

The behaviourofthesolution cannow bededucedfrom (4.19)) (4.21) and (4.12). 
The first of these is valid in the region where ee+" < 1, and the effects of viscosity 
and thermal conduction are negligible. The solution consists of an upward- 
and downward-travelling (reflected) wave of wavelength 27~/,8. The ratio of their 
amplitudes is the reflexion coefficient K R ,  which is given by 

C(a2)  V, - V, e2i@ Pr-2ip 
C(al)  V, - V,eW Pr-2il' ' K ,  = exp(-7~,8--22i,8loge)- (4.23) 

(4.24) 

Consequently, (4.25) 

It is useful to note that the maximum value of lKItl = e-"P(K + V,)/(V, + V,) = e-@. 
The reflexion process is now more complicated than for cases I1 and I11 

because of the existence of two reflecting layers. The lower one, in the vicinity 
of z = -loge, is due to the effect of thermal conduction, while the upper one, 
near z = -log (ePr), is caused by the viscosity. The coefficient ITR describes the 
combined effect of both layers on the wave motion below the lower one. Between 
the two layers the wavelength changes to 2n/P*, and the upper layer is displaced 
upward as Pr --f 0. Thus, increasing log Pr by n-/p* shifts the upper layer by half 
a wavelength, which should leave K ,  unchanged. The periodicity of K ,  is indeed 
evident from (4.23). In  the region above the upper layer (ePreZ 9 1) the wave 
motion is damped. 

The periodicity of lKRl with log Pr is in marked contrast t o  the result of case 
111, for which \KRl = (V,/K)e-"P. The conclusions of case I11 should, therefore, 
be considered erroneous. However, the mean-square value of the difference 
between (q/V,) e-nP and (hTR( turns out to  be small compared with ecnJ and tends 
to zero as ,8 -+ 0, which suggests that the results of case I11 are not completely 
meaningless. The situation is illustrated by the graphs in figures 2 (a) and (b) .  

5. Numerical results 
The results of the previous section are asymptotically valid as Pr -+ 0. I n  

order to determine the range of Pr in which they are reasonabIy accurate, the 
boundary-value problem was solved numerically for several different values 
of Pr and p. For the numerical integration it is convenient to deal with the 
system (3.5) with boundary conditions (2.7) at z = 0 and the condition 

DW,DT+O as z - f o o .  (5.1) 
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FIGURE 2. Magnitude of the reflexion coefficient for cases I11 and IV  for 
( a )  Pr = and ( b )  Pr = 

The last condition is used in place of (2.8) and (2.9) since we have shown that T 
and TV both approach constant values as z -+ co. 

Using centred differences, we can replace the system of differential equations 
( 2 . 5 )  by a set of difference equations 

A,*,+, + B,O, + C,@fi-l = 0, ( 5 . 2 )  
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FIGURE 3. Logarithm of ( a )  the temperature oscillation amplitude and ( b )  the 
velocity oscillation amplitude; Pr = (T = 1.084. 

where an is the column vector with components iT(z,) and W(z,), and A,, 
B, and C ,  are 2 x 2 matrices. The system was solved in an interval 0 < z < L 
sufficiently large to allow T and TY to reach their limiting values, and the bound- 
ary condition (5.1) was replaced by eN = @N-l, whereN is the index of the point 
z = L. The problem was solved by the standard method in which the en are 
computed from a linear equation *, = a,*n+l+Ij, by backward integration, 
while the matrices 

a, = - [B, + Cna,-J-l An7 

P n  = - [ B n  +Cnan-ll-lCnPn-l and the vectors 

are computed by forward integration (see, for example, Richtmyer & Morton 
1957, pp. 198-201; or Lindzen 1970, pp. 326-330). 
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FIGURE 4. Average kinetic energy; Pr = d = 1.084. 
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Prandtl number, Pr 

FIGURE 5. Magnitude of the reflexion coefficient as a function of the Prandtl number. 
-, asymptotic results; ---- , numerical results. (a )  CT = 1.084. (b) cr = 1.305. 
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The problem was solved with E = 10-8, a sufficiently small value to test the 
asymptotic formulae, for two different values of the wavelength h = = 30 
and 15 (at which the reflexion is substantial) and for various values of Pr. A value 
of 40 or 50 was more than adequate for L, and a non-uniform mesh size was 
needed because of the boundary layer near z = 0. For z > 0-2 the mesh size 
AZ = 0.1 was used, while in the boundary layer 1000 points were found to be 
sufficient with AZ = Between the two regions the mesh size was gradually 
increased to provide a smooth transition. 

Sample solutions are shown in figures 3(a )  and (b).  The plot of the kinetic 
energy density (figure 4) clearly indicates the transition from one wavelength to 
another one, and allows one to calculate the magnitude IKRNl of the reflexion 
coefficient. Letting Jf and m denote the maximum and minimum values of the 
oscillation amplitude, and r = (M/m)*, lKR,vl can be computed from 

IKRlVl = ( r -  l ) / ( r +  1). (5.3) 

The values computed from the graphs were found to agree with the values ob- 
tainedfrom (4.25) to about three places. 

A comparison of the values of the magnitude of the reflexion coefficient 
obtained from the computations and from the asymptotic formula is shown in 
figures 5 (a )  and (b).  They are in good agreement for Pr < 0.02 and in fair agree- 
ment even up to Pr = 0.2. Above that value lKnNl is essentially constant and 
close to the value e-nfl, the asymptotic result for case 11. A reasonable approxima- 
tion can be obtained, therefore, merely by piecing together the asymptotic 
results for cases I1 and IV. 
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